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Abstract
Statistical association measures (AM) play an important role in the automatic extraction of collocations and
multiword expressions from corpora, but many parameters governing their performance are still poorly understood.
Systematic evaluation studies have produced conflicting recommendations for an optimal AM, and little attention
has been paid to other parameters such as the underlying corpus, the size of the co-occurrence context, or the
application of a frequency threshold.
Our paper presents the results of a large-scale evaluation study covering 13 corpora, eight context sizes, four
frequency thresholds, and 20 AMs against two different gold standards of lexical collocations. While the optimal
choice of an AM depends strongly on the particular gold standard used, other parameters prove much more
robust: (i) small co-occurrence contexts are better than larger spans, and the best results are usually obtained
from syntactic dependencies; (ii) corpus quality is more important than sheer size, but large Web corpora prove
to be a valid substitute for the British National Corpus; (iii) frequency thresholds seem to be unnecessary in
most situations, as the statistical AMs successfully weed out rare and unreliable candidates; (iv) there is little
interaction between the choice of AM and the other parameters.
In order to provide complete evidence for our observations to readers, we created an interactive Web-based
application that allows users to manipulate all evaluation parameters and dynamically updates evaluation graphs
and summaries.
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1. Introduction

Traditionally, the identification of collocations and other types of lexicalized multiword
expressions (MWE) has been based on co-occurrence data quantified by statistical associ-
ation measures (AM). A typical extraction pipeline obtains co-occurrence counts (within
a span of n words, within a sentence, or in a direct syntactic dependency relation) from
a given source corpus. Candidates are then ranked according to their association scores,
optionally filtered by various criteria, and finally presented to lexicographers or domain
experts for manual validation (Evert, 2008).

Recent work has focused on complementing AMs with other indicators for the non-
compositionality (Katz & Giesbrecht, 2006; Kiela & Clark, 2013; Yazdani et al., 2015),
non-modifiability (Villada Moirón, 2005; Nissim & Zaninello, 2013; Squillante, 2014)
or non-substitutability (Pearce, 2001; Farahmand & Henderson, 2016) of candidate ex-
pressions; on combining different information sources using machine learning techniques
(Ramisch et al., 2010; Tsvetkov & Wintner, 2014); or on the extraction of a specific
subtype of MWE (Baldwin, 2005; Tu & Roth, 2011; Smith, 2014).

Statistical association remains an important component in virtually all of these ap-
proaches, but our understanding of the properties of different AMs and of other parameters
such as the size of the co-occurrence context is still incomplete. Previous evaluation stud-
ies on collocation identification (cf. Section 3) leave a number of important gaps: (i) most
studies evaluate only a small range of AMs (except for Pecina, 2005); (ii) the evaluation
typically focuses on a specific subtype of MWE, so that different studies often report
contradictory results; (iii) to date there has been no systematic analysis of the influence
of source corpus, co-occurrence context and frequency threshold.
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In this paper, we present the results of a large-scale evaluation study aiming to fill these
gaps. Since we believe that AMs should not be tuned to a particular subtype of MWE,
but rather capture a general “attraction” between words that may then be combined
with more specific indicators such as syntactic flexibility, our gold standard is based on
the broad and intuitive notion of lexical collocations (see Section 2). We draw on two
different English collocation dictionaries in order to assess the robustness of evaluation
results. We evaluate 20 association measures, 13 corpora, eight co-occurrence contexts
and four frequency thresholds against the two collocation dictionaries. In order to be able
to deal with the complexity of 20× 13× 8× 4× 2 = 16,640 parameter combinations, we
introduce an interactive Web-based viewer for evaluation graphs.1

2. Lexical collocations

Lexical collocations – salient co-occurrences of two lexical items (for a full definition and
literature review, see Bartsch, 2004) – form a subtype of the larger family of lexicalized
MWE and are notoriously difficult to delineate due to the fuzzy nature of the linguis-
tic relation between their constituent words (which is sometimes described as a “habit-
ual” combination, or simply defined mechanistically in terms of recurrence; e. g. Firth,
1957; Sinclair, 1966). In contrast to many other types of MWEs, lexical collocations are
more susceptible to regular syntactic alternations. They are, furthermore, semantically
transparent to a large degree, although many collocations carry additional, often domain-
specific meanings. Examples of lexical collocations are argue + plausibly, attempt + thwart
and measure(s) + coercive.

Our evaluation operationalizes lexical collocations as combinations of two lexical words.
We assume that larger combinations such as in a certain measure can easily be recognized
based on a two-word nucleus (measure + certain) by a lexicographer working with a
corpus-based list of candidates, or generated by an automatic MWE extraction pipeline
from the same nucleus.

Since the early days (Sinclair, 1966), the automatic identification of lexical collocations
has relied primarily on the co-occurrence frequency of the words in question within a given
context window. This window is typically defined as a surface span of 3 to 5 words to
the left and right, but other span sizes have been employed in collocation studies ranging
from one-word spans to entire sentences. Some authors define lexical collocations as a
syntactic phenomenon (Bartsch, 2004), which suggests a co-occurrence context based on
direct syntactic dependency relations, requiring a parsed corpus. After data extraction,
researchers often apply a frequency threshold (e. g. f ≥ 5) to filter the co-occurrence data.
Finally, candidates are ranked according to a statistical association measure based on the
joint and marginal frequencies of each word pair; more than 50 different measures have
already been proposed in the literature (Pecina, 2005).

3. Related work

A typical approach to assessing the quality of a collocation extraction method is to ex-
tract a ranked list of collocation candidates and to manually identify the number of true

1 Since some parameter combinations are not feasible (e. g. because a high frequency threshold does not
leave enough candidates for the evaluation), the actual number of evaluation settings in our experiments
and in the viewer is 12,860.
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collocations among the n highest ranking candidates. This methodology is adopted, for
example, by Seretan & Wehrli (2008) who compare their syntax-based extraction method
with a window-based approach by manually annotating 250 candidates taken from the
top 0%, 1%, 3%, 5% and 10% of the candidate lists for each of the four languages and two
approaches they are looking at. Disadvantages of this evaluation methodology are that it
is impossible to determine recall and that it is difficult to add new approaches or associa-
tion measures to the evaluation since that would require additional manual annotation of
the new candidate lists (consequently, Seretan & Wehrli, 2008 only report precision and
focus on a single association measure, log-likelihood).

Another approach, introduced by Evert & Krenn (2001), focuses on a fixed set of true
collocations and on the one hand allows us to determine precision and recall for arbitrarily
large n-best lists of candidates and on the other hand makes it easy to add new association
measures or extraction strategies to the evaluation. Results for this approach to evaluation
of collocation extraction are usually given in the form of precision-recall curves. This is
the approach taken, for example, by Pearce (2002) whose evaluation is based on 4,152
multiwords from the New Oxford Dictionary of English or by Pecina (2005) who evaluates
a wide range of AMs based on more than 2,500 collocational dependency bigrams. Pecina
& Schlesinger (2006) and Pecina (2010) also calculate the mean average precision for
recall values between 0.1 and 0.9 to arrive at a single evaluation score. Kilgarriff et al.
(2014) do not use precision-recall curves but report precision, recall and F5-scores (giving
more weight to recall) for different combinations of parameter settings such as AM, size
of the n-best candidate lists or frequency thresholds based on 5,327 collocations for 102
headwords for English and 4,854 collocations for 100 headwords for Czech.

A related approach to evaluation treats collocation extraction as a classification task and
uses a test set consisting of true collocations and non-collocations, reporting the usual
metrics of precision, recall and F -score. This is the approach taken, for example, by
Karan et al. (2012) who evaluate machine learning models for collocation extraction for
Croatian based on a test set of 84 collocations and 450 non-collocations.

Finally, there are also approaches that focus on a qualitative evaluation instead of a
quantitative one. Wermter & Hahn (2006), for example, compare ranked candidate lists
by looking at the true positives and true negatives in the upper and lower half of the
candidate lists.

Most of these studies focus on a particular system for collocation or MWE identification,
on the comparison of different AMs and the effect of linguistic filters, or on optimizing
extraction quality with the help of machine learning. To our knowledge, no systematic
comparative study of the influence of source corpus and co-occurrence context has been
published so far.

4. Data and methods
4.1 Gold standard

We adopt the evaluation methodology of Evert & Krenn (2001) and Pecina (2005), using
precision-recall graphs in order to visualize and compare the distribution of true pos-
itives in candidate lists ranked according to different AMs. As has been explained in
Section 2, lexical collocations are operationalized as pairs of lexical words (nouns, verbs,
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adjectives and adverbs). Since most such collocations are combinations of lexemes rather
than specific word forms, all word pairs are lemmatized. We do not distinguish between
homographs with different parts of speech (e. g. the noun attempt vs. verb to attempt)
because one of the two sources for our gold standard does not provide POS information.2

Because of the wide scope of our study and the large number of parameter combinations
to be considered, manual annotation of candidate sets extracted from the corpus – as
recommended by Evert & Krenn (2001) – is not feasible. Instead, we follow Pearce (2002)
in using a fixed set of known collocations as a gold standard. We obtained this gold
standard from two specialized collocation dictionaries:

BBI = The BBI Combinatory Dictionary of English (Benson et al., 1986);
OCD = Oxford Collocations Dictionary for students of English, 2nd edition (McIntosh

et al., 2009).

Since BBI is not available in machine-readable form, we selected a set of 203 node words
based on various criteria (words sampled from different frequency bands, words known to
have interesting collocational patterns, at least 4 collocates in the two dictionaries). For
each of the 203 nodes, all lexical words were manually transcribed from the corresponding
entries in BBI and lemmatized.

Figure 1: BBI entries corresponding to the node lemma measure in our gold standard

Consider the lemma measure as an example. Since we do not distinguish between different
POS categories, collocates are collected from three entries in the BBI dictionary (for the
noun measure, the verb measure and the plural noun measures), as shown in Figure 1. Our
annotators identified 26 lemmas of lexical words in these entries, yielding the following
collocates ofmeasure in the BBI gold standard: carry, certain, coercive, compulsory, cubic,
draconian, drastic, dry, emergency, extreme, good, harsh, liquid, make, metric, preventive,
prophylactic, radical, safety, security, stern, stopgap, stringent, take, tape, temporary.

The corresponding OCD collocations were extracted from an electronic version of the
dictionary, using the same strategy as Uhrig & Proisl (2012). In this way, we found a total
of 2,845 lexical collocations for our 203 node lemmas in the BBI, and 18,545 in the OCD.
We refer to these sets as the BBI and OCD gold standard below.

2 A second reason is that the Web1T5 n-gram database does not include POS tagging; application of
an off-the-shelf tagger is impossible because the underlying text corpus is not publicly available.
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BBI was selected in a previous study (Bartsch & Evert, 2014) as a dictionary dating from
the pre-corpus age. Unlike more recent collocation dictionaries, it can safely be assumed
to be free of any bias in favour of a particular corpus or collocation extraction method.
There are some limitations – due to the time of its compilation, its relatively small size and
scope, as well as the heterogeneity of entries3 – which have to be taken into consideration
when interpreting the evaluation results.

4.2 Corpus data and parameters

We extracted co-occurrence data from the 13 corpora listed in Table 1, ranging in size
from small, relatively clean corpora such as the British National Corpus (BNC) of 100
million words to huge Web corpora of up to 16 billion words (joint Web corpus = ENCOW
+ WebBase + ukWaC + Wackypedia). The corpora cover a wide diversity of text types:
a balanced sample (BNC), movie subtitles (DESC), newspaper data (Gigaword), ency-
clopaedia articles (Wackypedia), Web corpora (ukWaC, WebBase, UKCOW, ENCOW).
In addition, we included n-gram databases derived from Web text (Web1T5) and scanned
books (Google Books), which can also be used to obtain co-occurrence data (Evert, 2010).
All corpora except for Web1T5 include POS tagging and lemmatization.

Corpus Size
British National Corpus (BNC) 0.1 G
English movie subtitles (DESC) 0.1 G
Wackypedia subset (WP500) 0.2 G
Wackypedia (Wiki) 1 G
ukWaC 2 G
Gigaword newspaper corpus 2 G
WebBase 3 G
UKCOW 4 G
ENCOW 10 G
Joint Web 16 G
Google Books BrE 50 G
Google Books 500 G
Google Web 1T5 1000 G

Table 1: Source corpora for the evaluation study. Sizes are specified in billion tokens

We extracted candidate collocations for the 203 node words using different co-occurrence
contexts:

• direct syntactic relations;
• surface span of 1, 2, 3, 5 and 10 words;4
• sentence context.

We used the efficient and robust C&C parser (Clark & Curran, 2004) to extract syntac-
tic dependencies from all corpora. For Google Books, we used the dependency bigrams

3 In addition to lexical collocations proper, the BBI entries include phenomena ranging from fixed
multiword units to combinations that might rather be described as colligations.

4 Following Evert (2008), we denote these spans as L1/R1, L2/R2, etc. For example, a L2/R2 span
includes two words to the left and two words to the right of each occurrence of the node word.
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included in the database; syntactic context is not available for the Web1T5 n-grams. For
surface spans, care was taken to obtain valid co-occurrrence counts and marginal frequen-
cies as mandated by Evert (2008), using the UCS toolkit.5 Note that 5- and 10-word
spans are not available for the Google Books and Web 1T5 n-grams. In order to keep
the amount of data manageable, potential collocates were restricted to a set of 37,437
general English words.6 Even so, sets of up to five million candidate pairs were obtained
for the 203 node lemmas, depending on corpus and context size (cf. Table 2). Optionally,
frequency thresholds were used to pre-filter the candidates.

Candidate sets were then ranked according to 20 different association measures. In ad-
dition to measures recommended by Evert (2008), we included the asymmetric ∆P that
has recently become popular in the corpus linguistics community (Gries, 2013). We eval-
uated the “forward” ∆P2|1 and the “backward” ∆P1|2 version of the measure, as well
as two symmetrical variants. See Appendix A for a complete listing with equations and
references.

4.3 Evaluation methodology

Like Evert & Krenn (2001) and Pecina (2005), we pool the candidate collocations ex-
tracted for all 203 nodes into a single set (for a given combination of corpus, co-occurrence
context and frequency threshold), which is then ranked according to one of the 20 AMs.
In addition, candidates are marked as true positives (TP) or false positives (FP) by com-
parison with either the BBI or the OCD gold standard.

After setting a cutoff threshold to obtain an n-best list of highest-ranked candidates, we
compute precision (P , the percentage of TPs among the n candidates) and recall (R,
the percentage of all TPs in the gold standard found in the n-best list) as quantitative
evaluation criteria. The number n of candidates is chosen arbitrarily to trade off between
high precision (short n-best lists) and high recall (long n-best lists). As proposed by Evert
& Krenn (2001), we visualize this trade-off by plotting precision against recall for all
possible n. An example can be seen in Figure 2 for the BNC corpus, syntactic context,
and BBI as gold standard. Such P/R graphs allow a direct and detailed comparison of
different AMs. For example, the solid blue line in Figure 2 shows that a ranking according
to t-score (t) achieves a recall of 10% of the BBI gold standard (i. e. 285 of the 2,845 BBI
collocations have been found) at a precision of 20% (i. e. one in five candidates in the
n-best list is a true positive). The coverage of 91.6% shown at the top of the plot is the
proportion of BBI collocations found among the full set of 374,239 candidates extracted
from the BNC; this coverage corresponds to the highest recall value that can be reached
on this data set.

The “higher” a P/R graph is located in the plot, the better the ranking achieved by the
corresponding association measure. However, sometimes P/R graphs of different measures
intersect (e. g. ∆P2|1 and log-likelihood G2 in Figure 2), making it difficult to determine
an unambiguous ranking. A related problem of P/R graphs is that they allow a straight-
forward comparison of different association measures, but not of other parameters such

5 http://www.collocations.de/software.html
6 This word list comprises the lexical nodes and collocates found in BBI and OCD entries as well as all
lexical words from the CUVplus dictionary (http://ota.ox.ac.uk/headers/2469.xml). Inflected forms
were lemmatised using a heuristic mapping derived from the British National Corpus.
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Figure 2: Precision-recall graphs for selected association measures evaluated against the BBI gold standard (British
National Corpus, syntactic co-occurrence context, f ≥ 1)

as source corpus and co-occurrence context (unless a single fixed association measure is
chosen a priori).

For these reasons, it is desirable to introduce a composite evaluation criterion that summa-
rizes the complete P/R graph into a single score. Following Pecina & Schlesinger (2006),
we use average precision – corresponding to the area under a P/R graph – as a composite
measure. Since recall points above 50% can only be achieved with unrealistically long
n-best lists, we average precision values only up to 50% recall and refer to this composite
measure as AP50.

5. Results
Figure 2 shows striking differences between association measures. Neither log-likelihood
(G2), which is popular in computational linguistics, nor t-score (t), which is popular in
computational lexicography, achieve convincing performance. Mutual Information (MI)
can only be described as abysmal, partly due to the lack of a frequency threshold for this
data set.7 The best – and almost indistinguishable – results are obtained by Pearson’s
chi-squared test (X2), a heuristic variant of Mutual Information (MI2) and the Dice coef-
ficient.8 In the composite ranking of association measures, X2 takes first place with AP50
= 24.2%, followed by Dice with 24.0%. This is particularly surprising given the widely-
accepted claim that G2 is vastly superior to X2 for collocation identification (Dunning,
1993).

A second striking observation is how much the evaluation results depend on which colloca-
tion dictionary is used as a gold standard, even though both are targeted at the same type

7 As we will see below, frequency thresholds have little impact on the best-performing AMs, so it makes
sense to present the basic findings here without a frequency threshold (i. e. f ≥ 1).

8 This is particularly relevant for users of the SketchEngine (Kilgarriff et al., 2004) which uses (a rescaled
version of) the Dice coefficient for word sketches (Rychlý, 2008).
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Figure 3: Precision-recall graphs for selected association measures evaluated against OCD gold standard (BNC,
syntactic context, f ≥ 1)

of users, i. e. foreign and second language learners. Figure 3 shows an entirely different
ranking of the association measures, even though corpus and co-occurrence context are the
same as in Figure 2: best results are now obtained by log-likelihood (G2, AP50 = 56.8%)
and t-score (t, AP50 = 52.5%).9 These differences presumably reflect the more focused
notion of lexical collocations underlying OCD, but also its bias towards the particular
association measures used in the compilation of the dictionary.

Using AP50 as a composite evaluation criterion, we can now study the effects of the other
parameters. For every combination of source corpus, co-occurrence context and frequency
threshold, we selected the best performing association measure and used its AP50 value as
an overall score. The left-hand panel of Figure 4 compares different co-occurrence contexts
on the British National Corpus (f ≥ 1). For both gold standards, smaller contexts achieve
considerably better performance, and the best results are achieved if candidate pairs
must occur in a direct syntactic relation. Similar plots for other corpora and frequency
thresholds (not shown for reasons of space) reveal the same pattern, except for minimal
differences (e. g. L1/R1 might be slightly better than L2/R2 if a frequency threshold is
applied).

The right-hand panel of Figure 4 compares results obtained on different source corpora for
the same two-word co-occurrence span (which is available for all 13 corpora), again without
frequency threshold (f ≥ 1). This chart shows a more intricate pattern. Summarizing, we
find that:

1. Size matters: larger corpora of the same kind (WP500 vs. full Wiki; Web corpora)
perform better. However, the corpus size has to be scaled up by a factor of 10 in
order to achieve a notable improvement.

9 AP50 values are also much higher overall for OCD than for BBI. This is to be expected, though, simply
because of the much larger number of TPs in the OCD gold standard (6.5× as many as in BBI).
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Figure 4: Left panel: Best AP50 scores achieved on the British National Corpus for different co-occurrence contexts.
Right panel: Best AP50 scores achieved on different corpora with two-word co-occurrence span (L2/R2). In each
case, the optimal AM has been selected

2. Clean, balanced samples (BNC) are better than large, messy Web corpora of the
same size. The biggest Web corpora outperform the BNC, but this requires almost
100 times as much data (ENCOW: 10G words vs. BNC: 100M).

3. Movie subtitles (DESC), which are closer to spoken language and match psycholin-
guistic observations (New et al., 2007), perform better than the BNC against the
BBI gold standard, but much worse when evaluated against OCD.10

4. Even though n-gram databases have been compiled from huge corpora (from 50
billion words for British GoogleBooks to 1 trillion words for Web1T5), they appear
to be unsuitable for collocation identification.

5. There are some differences between the two gold standards, but the main observa-
tions hold equally well for BBI and OCD.

Again, similar plots for other co-occurrence contexts and frequency thresholds (not shown)
always reveal the same pattern.

Figure 5 shows that there is virtually no interaction between the choice of AM and the
other parameters (co-occurrence context and source corpus); similar patterns hold for the
OCD gold standard and the other 15 AMs. The only exception is the combination of a
frequency threshold with a small corpus, which improves the performance of MI (right
panel). This has little practical relevance, though, because MI never comes close to the
best-performing measures.

One of the most surprising results of our evaluation is the negligible impact of fre-
quency thresholds: apparently, the statistical measures successfully weed out unreliable
low-frequency candidates. Figure 6 compares a wide range of frequency thresholds on the
BBI gold standard. The top panel shows that thresholds up to f ≥ 10 only lead to a tiny
10 One possibility is that OCD in particular is focused on British English as represented in the BNC,

which provided the empirical basis for the first edition of the dictionary. British films account for only
10% of the DESC corpus and the subtitle files consistently use American spelling. This would also
explain the lower performance of Gigaword (mostly U.S. newspapers) and WebBase (a Web corpus
compiled in the U.S., while ukWaC and UKCOW only include Web pages from .uk domains).
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Figure 5: Co-occurrence context (left panel) and source corpus (right panel) do not interact with the choice of
association measure. Illustrated for the BBI gold standard, the British National Corpus with f ≥ 1 (left panel)
and a two-word co-occurrence span with f ≥ 5 (right panel)
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Figure 6: Effect of frequency thresholds on various corpora (top panel) and AMs (bottom panel), for syntactic
context and BBI gold standard
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f ≥ 1 BBI OCD
corpus ncand context AM AP50 coverage context AM AP50 coverage
BNC 0.5M syntactic X2 24.2 91.6 syntactic G2 56.8 94.0
DESC 0.3M syntactic MIconf 24.6 80.9 syntactic MIconf 44.0 72.8
Gigaword 1.2M L2/R2 X2 22.1 97.6 L1/R1 G2 52.3 95.6
WP500 0.5M syntactic X2 22.6 92.2 L2/R2 G2 50.6 92.8
Wiki 1.0M syntactic MI2 22.8 97.0 L2/R2 G2 51.8 97.4
ukWaC 1.4M syntactic MI2 22.8 98.7 L1/R1 G2 56.5 97.5
WebBase 1.7M syntactic MI2 25.1 99.2 syntactic G2 54.2 99.5
UKCOW 1.9M syntactic MI2 24.6 99.3 L1/R1 G2 58.0 98.1
ENCOW 2.5M syntactic MI2 26.1 99.7 L1/R1 G2 59.7 98.7
Joint 2.8M syntactic MI2 26.4 99.8 L1/R1 G2 59.5 99.4
Web1T5 1.8M L1/R1 MI2 15.5 97.5 L1/R1 MI3 37.1 97.9
BooksGB 0.9M syntactic MI2 21.7 95.4 L1/R1 G2 47.9 93.0
BooksEN 1.5M syntactic MI2 22.8 96.1 syntactic G2 48.6 96.9

Table 2: Overview table of best evaluation result for each corpus against the BBI and OCD gold standard (coverage
indicates the highest recall point that can be achieved by a given parameter combination)

improvement for the smallest corpus (BNC) and have no effect at all for larger corpora.
The bottom panel shows that thresholds mainly help to counteract the low-frequency bias
of the MI measure. All other AMs are unaffected, and even with a high threshold, MI
remains well below the best-performing measures.

A detailed overview of the evaluation results is shown in Table 2. For each source corpus,
the AP50 score achieved by the optimal co-occurrence context and association measure
is shown, as well as the coverage of the respective gold standard. In order to indicate the
amount of data processed, the second column (ncand) shows how many million word pairs
were extracted from each corpus for a two-word surface span (L2/R2).

6. An interactive viewer

Any paper-length treatment of association measures is faced with the problem that the
large number of parameter settings makes it impossible to give the reader a full overview
of their influence in all possible combinations. For example, in Section 5 we showed the
influence of source corpus and co-occurrence context based on AP50 values achieved by
the best AM in each case. Such summary charts hide important details of the trade-off
between precision and recall (e. g. some applications may prefer a measure that achieves
very high precision even if recall is only 10%); they also cannot show whether the overall
shape of a P/R graph remains stable across different parameter settings. Even so, space
constraints make it impossible to provide comprehensive evidence for all our observations
within this paper (e. g. the similar effect of parameters for both gold standards, and in
particular the consistently small impact of frequency thresholds). Figures 2, 3 and 5 can
only show a small selection of the 20 association measures included in our evaluation.
While correlations between the rankings for different association measures (Figure 7)
provide an objective criterion for a principled selection – each group of almost perfectly
correlated measures (Dice and Jaccard; chi-squared and z-score; MI, relative risk and two
variants of the odds ratio) can be represented by one member – there are only few such
strong correlations. Moreover, even measures with correlation ρ > .99 (e. g. log-likelihood,
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t-score and chi-squared) sometimes achieve substantially different results in the evaluation
(cf. Figures 2 and 3) and should not be grouped together.11
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Figure 7: Spearman rank correlation of different association measures, averaged over all experimental conditions

In order to remedy these problems, an interactive viewer was created to complement the
present paper and allow the reader to explore the influence of the parameters discussed
above as well as their interactions.

Since the extraction of collocations candidates from large corpora is a very time-consuming
process,12 all evaluation graphs have been pre-computed using the statistical software R
and exported as a set of JSON files. These files are processed further, filtered and served
through a REST API with the help of Perl scripts. The front-end of the viewer is written
in JavaScript and provides a set of sliders and buttons to modify the following parameters:

1. gold standard (BBI vs. OCD2);
2. corpus (see Section 4);
3. co-occurrence context (syntactic relation, various spans, whole sentence);
4. frequency threshold (f ≥ 1, 5, 50, 1000);13

5. association measures (select measures to be displayed at the same time).
11 We believe that this surprising observation is connected to the fact that rank correlations were com-

puted over very large data sets comprising a million candidate pairs and more. Crucial differences
between the rankings of the relatively small number of TPs, which affect the evaluation scores directly,
are lost among the rankings of many irrelevant FPs. This example shows clearly how difficult and
counter-intuitive the interpretation of correlation coefficients can be.

12 The extraction procedure ran for several weeks on a high-end server (16 cores and 256 GiB RAM).
13 Since the sizes of the corpora used in this study vary by several orders of magnitude, the range of

thresholds is quite wide. Keep in mind that a threshold of f ≥ 5 in the BNC (100M words) corresponds
to a threshold of f ≥ 500 in UKCOW (10G words). It might be profitable to explore thresholds relative
to corpus size in future work.
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The full P/R graphs for the chosen parameter settings are displayed to the user and dy-
namically updated as the sliders are moved. Additionally, coverage and composite AP50
scores are shown. The viewer software will be made available under an open-source li-
cense, including the R code for exporting suitable JSON data. An online version for the
evaluation reported here can be accessed at http://www.collocations.de/eviewalation/.

7. Conclusion

The systematic evaluation of different association measures, source corpora, co-occurrence
contexts and frequency thresholds in a collocation extraction tasks fills important gaps in
the current state of research into AMs and MWE identification.

We were able to show that the carefully sampled British National Corpus is superior to
comparably-sized messy Web corpora for the identification of lexical collocations. How-
ever, sufficiently large Web corpora (close to 10 billion words) achieve similarly good or
even better results than the BNC. Concerning the co-occurrence context, it was shown
that small spans deliver more accurate information than larger contexts and the most
restricted context, i. e. syntatic dependency, is almost always the best choice. Contrary to
widespread assumptions, frequency thresholds have very little effect except to counteract
the low-frequency bias of the MI measure.

The choice of an optimal AM is a more intricate problem, which depends not only on the
type of MWE to be identified (lexical collocations in our case) but also on the specific
definition of this MWE type, embodied by the two different collocation dictionaries (BBI
and OCD) in our study. For BBI, Pearson’s chi-squared statistic (X2) and MI2 yield the
best results; for OCD, log-likelihood (G2) is the optimal AM. Fortunately, performance
differences between AMs do not interact with the other parameters: in all cases, very large
Web corpora and small co-occurrence contexts produce the best results. It is thus valid
to optimize AMs independently of these parameters in future research.

Since the present evaluation builds entirely on English data, no conclusions regarding
other languages can be drawn and further research is required. Nonetheless, it is to be
expected that collocation extraction for languages with a richer morphology and/or a
freer word order, e. g. German or Russian, will benefit from larger window sizes and in
particular from dependency parsing. This would be in line with the results by Ivanova
et al. (2008) and Ambati et al. (2012).
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A. Association measures

The listing below details the complete list of statistical association measures included in
our evaluation. Equations are specified using the notation of Evert (2008):
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expected frequencies observed frequencies

collocate ¬collocate collocate ¬collocate

node E11 = R1C1

N
E12 = R1C2

N
node O11 O12 = R1

¬node E21 = R2C1

N
E22 = R2C2

N
¬node O21 O22 = R2

= C1 = C2 = N

Oij = contingency table of observed frequencies
O11 = observed co-occurrence frequency
Eij = contingency table of expected frequencies
E11 = expected co-occurrence frequency
Ri = row sums of the contingency table
R1 = marginal frequency of node
Cj = column sums of the contingency table
C1 = marginal frequency of collocate
N = sample size

• log-likelihood (Dunning, 1993)

G2 = 2
∑
ij

Oij log Oij

Eij

• chi-squared test (with Yates’s correction)

X2 =
N
(
|O11O22 −O12O21| − N

2

)2

R1R2C1C2

• t-score (Church et al., 1991)

t = O11 − E11√
O11

• z-score (with Yates’s (1934) correction)

z =
O11 − E11 ± 1

2√
E11

• co-occurrence frequency
f = O11
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• mutual information (Church & Hanks, 1990)

MI = log2
O11

E11

• MIk (Daille, 1994)

Mk = log2
(O11)k
E11

for k = 2, 3, 4

• conservative MI (Johnson, 1999)

MIconf, α = log2 min {
µ > 0

∣∣∣ e−µE11
∞∑

k=O11

(µE11)k
k! ≥ 10−5

}

• Dice coefficient
Dice = 2O11

R1 + C1

• Jaccard coefficient
Jaccard = O11

O11 +O12 +O21

• minimum sensitivity (Pedersen & Bruce, 1996)

MS = min
{
O11

R1
,
O11

C1

}
• log odds ratio (with optional discounting)

log θ = log O11O22

O12O21

log θdisc = log
(O11 + 1

2)(O22 + 1
2)

(O12 + 1
2)(O21 + 1

2)

• log relative risk
r = log O11C2

O12C1

• forward or backward Delta P (Gries, 2013)

∆P2|1 = O11

R!
− O21

R2

∆P1|2 = O11

C!
− O12

C2

• symmetrical Delta P

∆Pmin = min
{
∆P2|1, ∆P1|2

}
∆Pmax = max

{
∆P2|1, ∆P1|2

}
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B. Set of node lemmas

The following 203 lemmas were used as node words in our evaluation experiments: abor-
tion, accountant, achievement, act, advantage, affair, allocation, amusement, appetite,
argue, art, artery, assault, attempt, authority, back, bag, balance, ban, basket, battery, bat-
tle, beach, bean, beat, beef, beg, bend, bent, biology, blast, bomb, bone, boot, break, broth,
brother, bulb, bulletin, burst, cancer, carbon, care, cell, chain, chance, change, charac-
ter, check, chess, chief, child, citizen, claim, clean, cleaner, cliff, close, cold, collabora-
tion, commitment, confinement, consequence, cooking, cord, cotton, crime, criminal, cry,
cupboard, cut, decision, deny, diet, director, door, draft, dressing, drunk, earth, elbow,
enforce, environment, error, examination, executive, fee, feedback, fellowship, fever, fin,
finger, fist, fitness, flow, fly, force, forgive, foundation, fund, funeral, garlic, gas, gender,
gene, get, go, goal, gown, harm, havoc, head, health, heater, heating, heaven, heed, her-
nia, high, hotel, humanity, hygiene, injury, inmate, insight, intercourse, jam, juice, kick,
know, lapse, letter, light, line, majority, malice, maniac, measure, measurement, meat,
mechanic, membrane, minister, mother, move, nail, negligence, open, paint, pan, par-
don, pay, pie, pipe, place, plague, plant, plantation, plead, pool, power, prime, problem,
progress, query, question, quilt, race, radio, range, remark, representation, resuscitation,
right, sauce, say, sentence, set, shake, shotgun, shoulder, soda, spirit, state, steel, storm,
syllable, take, thirst, time, toss, trample, trial, triangle, tune, ulcer, universal, vacuum,
vein, way, weapon, wiper, wire
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